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A Local Mesh Refinement Algorithm for the

FDFD Method Using a Polygonal Grid
H. Klingbeil, K. Beilenhoff, and H. L. Hartnagel

Abstract-A local mesh refinement algorithm for the finite-

difference method in the frequency domain (FDFD) is presented
that is based on polygonal grids. It is applied to a simple test
structure for which the propagation parameters were computed

with a mode-matching method as a reference. It is shown that

the local mesh refinement realized with this polygonal grid sig-

nificantly improves the accuracy of the propagation constant

compared to the conventional FD method based on rectangular

meshes.

I. INTRODUCTION

u SUALLY, the fiuite-difference method in the frequency

domain (FDFD) is used with a nonequidistant cartesian

grid (Yee’s grid) [1]–[3]. The electrical field components are

defined on the mesh lines whereas the magnetic components

are located on a dual grid. In order to allow a better ap-

proximation of curvilinear geometries, tetrahedral cells can

also be proposed as an alternative. However, to ensure the

ortbogonality between the grid and the dual grid, one faces

the problem that the field components of the dual grid can be

defined outside the surface of the cell they belong to. This

problem arises especially if au angle between meshlines is

greater or equal 90”. Due to this restriction it is extremely

difficult to implement an automatic mesh-generation for FD

field theoretical methods. However, for many applications the

standard nonequidistant cartesian grid is still sufficient, and

with a local mesh refinement extension a better approximation

of arbitrarily shaped structures can be obtained with lower

numerical effort.

Until now, such local mesh refinement algorithms were only

presented in connection with time domain methods [4]-[6].

The interpolation of the field components used at the interface

between the two meshes leads to various problems if it is

transfered to the frequency domain case. For instance, high

errors were found when this kind of local mesh refinement

was applied to coplanar waveguides.

In this letter, a local mesh refinement will be presented

for the two-dimensional (2-D) case, which, therefore, uses

a polygonal orthogonal grid at the interface. Although the

algorithm was developed for arbitrary polygons, only triangles

and rectangles are needed in this case.

The method can be extended to three-dimensional (3-D)

problems.
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Fig. 1. Polygonal grid.

II. THE NUMERICAL METHOD

In the following the FD method for polygonal grids is

described in detail. Then the transition cell that forms the

interface between the two meshes and which consists of a

simple polygonal grid is presented.

A. Polygonal Grid

Fig. 1 shows a section of a 2-D polygonal grid. The transver-

sal electric field components are located on the polygon lines

(in the figure only one component EAB is shown). The

longitudinal electric field components are defined at the mesh

points of the polygons (two of the mesh points in the figure

are marked with A and B, the corresponding field components

are EA and EB ). The transversal magnetic field components

are defined on the grid-lines of the dual mesh and, therefore,

are perpendicular to the transversal electric field components

(one component IIlz is shown in the figure). The longitudinal

magnetic field components (e.g. l?l and l?z) are located at the

mesh points of the dual grid,

In the following the vector FXY is a vector that points from

x to Y.

By substituting @ = –jwfi, where ~ denotes the mag-

netic flux density, and assuming a time harmonic dependence

(~(t) = e~wt) Maxwell’s equations in integral form can be
written as follows:

(1)
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Fig. 2. Transition cell.
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If these equations are transfered into the Finite-Difference

scheme [3] and the e–~k~’-dependency of the fields is taken

into account, one obtains

In this equation, all variables F and G are scalar quantities.

These are obtained if integrals are approximated by simple

products. F corresponds to a surface integral whereas G

corresponds to a contour integral. The upper index indicates if

either the electric field or the magnetic field is integrated. The

lower index denotes the orientation of the field component.

For example, F~~ is an integration factor with

FfBEA~ =
/

G.: dri. (4)
1–2

It has to be taken into account that the size of a cell in the

longitudinal direction is infinitely thin, so that the surface

integral in (,$) degenerates to a simple contour-integral (note

that dd is p-p endicular to FIZ). Therefore, one finds

(5)@B = 61\~101 + +201

Cl and 62 are the relative complex permittivities of elementary

cells 1 and 2, respectively.

The other factors can be found similarly by

/
J’gBi2 ~ ~_A ~ ‘~~

G~B EAB %
J

k d;,
A–B

E
E
In
-t

l-% I

~K=c.a

Fig. 3. Test structure discretized with a local mesh refinement.

Gf!2B~z =
/

~ d; (6)
1–2 PT

jkz13A or jkzE~ can be substituted in (3) by using the

divergence condition jr cv~ d~ = O. One finds

The summation has to be performed over all transversal

electric field components Ei, which are defined on grid lines

beginning at corner A (EAB also belongs to this set).

The field components Ell and 132 in (3) can also be

substituted by using a discretized form of (2)

In this sum, all transversal electric field components Ei have

to be considered which surround point 1 clockwise.

After all substituticms there is one equation for each Ei
which is described by the other electric field components

and the square of the propagation constant k,. Due to the

linear dependence between the unknowns a complex algebraic

eigenvalue problem (A – AI) x = O is obtained where A =

-k;. The transversal electric field distribution corresponds to

x,

R Transition Cell

For the interface between coarse grid and fine grid, a

cell as shown in Fi:g~ 2 is applied. It is not possible to

achieve orthogonality between the electric and magnetic field

components if mesh point X is located in the middle of the

cell. Thus, this point has to be shifted to form an orthogonal

grid. The positions of the mesh points are defined as follows:

1 b2 p= !:, c#’/2- a-l

a= i>’
~=;, 6=

2(a–1) “

(7)

The following restriction has to be taken into account: the

parameters given in (7) should be used only for ~ < 1.

Usually, the grid can be chosen accordingly. For different
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Fig. 4. Error of the propagation constant for the test structure at
fco = 70 m–l, . conventional method (Yee’s grid); — local mesh

refinemen~ () coarse cell size ds = 2.5 ttmx ❑ tom-se cell size ds = 5 mm.

vahtes of ~, the mesh points of the dual grid calculated by

(7) will be too close to the original grid lines. It is possible

to determine a second set of parameters ~, ~, T and 8 which

holds for 1< ~ <2. For ~ >2, however, no solution exists.

III. NUMERICAL RESULTS

Fig. 3 shows the test structure analysed with the proposed

method. It is a simple rectangular waveguide with a conducting

slab. This structure was chosen since a local mesh refinement

according to Fig. 3 is useful to obtain a high field resolution at

the edge. The simple geometry also enables one to determine

the propagation constant with a very high accuracy by means

of a mode-matching method. For k. = 70 m– 1 one finds

kZ = 52.42 m-l with an extrapolated error below 0.01%.

In Fig. 4 the error of the propagation constant is presented

against the matrix order. The dotted curve is obtained with

an equidistant discretization of the structure. For the two other

curves a local mesh refinement as shown in Fig. 3 was applied.

The location of the interface between the two grids varies, i.e.

the area of the local mesh is increased, which also leads to

higher orders of the matrix. The curves constructed by this

scheme end at the dotted curve since increasing the size of the

local mesh will finally result in a structure with a fine mesh

everywhere.

One can observe that all results obtained with a local mesh

refinement provide smaller errors, Computations carried out

for a coplanar waveguide also show improved results for both

the phase and the attenuation constant.

IV. CONCLUSION

A new local mesh refinement algorithm for the finite-

difference method in the frequency domain was presented. It

is based on a noncartesian polygonal grid at the interface.

The method was applied to a test structure for which a

highly reliable reference calculation was performed. It could be

shown that the accuracy of the propagation constant computed

with the new method is significantly higher than that calculated

with a conventional method using a cartesian grid. The method

of polygonal grids is not restricted to local mesh refinements. It

can also be applied for arbitrarily shaped (e.g. round) structures

in order to allow a better approximation.
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