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A Local Mesh Refinement Algorithm for the
FDFD Method Using a Polygonal Grid

H. Klingbeil, K. Beilenhoff, and H. L. Hartnagel

Abstract—A local mesh refinement algorithm for the finite-
difference method in the frequency domain (FDFD) is presented
that is based on polygonal grids. It is applied to a simple test
structure for which the propagation parameters were computed
with a mode-matching method as a reference. It is shown that
the local mesh refinement realized with this polygonal grid sig-
nificantly improves the accuracy of the propagation constant
compared to the conventional FD method based on rectangular
meshes.

I. INTRODUCTION

SUALLY, the finite-difference method in the frequency

domain (FDFD) is used with a nonequidistant cartesian
grid (Yee’s grid) [1]-[3]. The electrical field components are
defined on the mesh lines whereas the magnetic components
are located on a dual grid. In order to allow a better ap-
proximation of curvilinear geometries, tetrahedral cells can
also be proposed as an alternative. However, to ensure the
orthogonality between the grid and the dual grid, one faces
the problem that the field components of the dual grid can be
defined outside the surface of the cell they belong to. This
problem arises especially if an angle between meshlines is
greater or equal 90°. Due to this restriction it is extremely
difficult to implement an automatic mesh-generation for FD
field theoretical methods. However, for many applications the
standard nonequidistant cartesian grid is still sufficient, and
with a local mesh refinement extension a better approximation
of arbitrarily shaped structures can be obtained with lower
numerical effort.

Until now, such local mesh refinement algorithms were only
presented in connection with time domain methods [4]-[6].
The interpolation of the field components used at the interface
between the two meshes leads to various problems if it is
transfered to the frequency domain case. For instance, high
errors were found when this kind of local mesh refinement
was applied to coplanar waveguides.

In this letter, a local mesh refinement will be presented
for the two-dimensional (2-D) case, which, therefore, uses
a polygonal orthogonal grid at the interface. Although the
algorithm was developed for arbitrary polygons, only triangles
and rectangles are needed in this case.

The method can be extended to three-dimensional (3-D)
problems.
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Fig. 1. Polygonal grid.

II. THE NUMERICAL METHOD

In the following the FD method for polygonal grids is
described in detail. Then the transition cell that forms the
interface between the two meshes and which consists of a
simple polygonal grid is presented.

A. Polygonal Grid

Fig. 1 shows a section of a 2-D polygonal grid. The transver-
sal electric field components are located on the polygon lines
(in the figure only one component F.p is shown). The
longitudinal electric field components are defined at the mesh
points of the polygons (two of the mesh points in the figure
are marked with A and B, the corresponding field components
are F4 and Eg). The transversal magnetic field components
are defined on the grid-lines of the dual mesh and, therefore,
are perpendicular to the transversal electric field components
(one component B, is shown in the figure). The longitudinal
magnetic field components (e.g. By, and By) are located at the
mesh points of the dual grid.

In the following the vector 'xy is a vector that points from
X toY.

By substituting B’ = —jwB, where B denotes the mag-
netic flux density, and assuming a time harmonic dependance
(f(t) = e?“t) Maxwell’s equations in integral form can be
written as follows:

-

— - BI
kg/eTEdA:jz{ = dg )
A 8A Mr
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Fig. 2. Transition cell.

/B'dﬁ:]{ E ds. )
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If these equations are transfered into the Finite-Difference
scheme [3] and the e~7*-%_dependency of the fields is taken
into account, one obtains

FE.FB
k2 - AR 122\ p k.Es — jk,E
( C'ABG o | Eap + —— GE, (jk-Ea — jk.ER)
FB (B, B{)
+ “L)=o. 3
GEGE, (Mz 1 )

In this equation, all variables F' and (G are scalar quantities.

These are obtained if integrals are approximated by simple

products. F' corresponds to a surface integral whereas G

corresponds to a contour integral. The upper index indicates if

either the electric field or the magnetic field is integrated. The

lower index denotes the orientation of the field component.
For example, F¥y is an integration factor with

FEBEAB ~ /

1-2

—

e.F dd. 4)

It has to be taken into account that the size of a cell in the
longitudinal direction is infinitely thin, so that the surface
integral in (4) degenerates to a simple contour-integral (note
that dd is perpendicular to 513). Therefore, one finds

F¥5 = €1]810] + €2/820] (5)

¢; and €3 are the relative complex permittivities of elementary
cells 1 and 2, respectively.
The other factors can be found similarly by

FEB, ~ / B’ da,
B-—-A

GEBEAB ~ /
A-B

E ds,
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Fig. 3. Test structure discretized with a local mesh refinement.
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Jkz2E4 or jk,Eg can be substituted in (3) by using the
divergence condition § e, E dA = 0. One finds

. . ‘' E B ~ 5o A
jk,Ba = Z?Zﬁ; B, FY¥Es~ /e,E dA.

The summation has to be performed over all transversal
electric field components £;, which are defined on grid lines
beginning at corner A (E4p also belongs to this set).

The field components B; and By in (3) can also be
substituted by using a discretized form of (2)

1 L
B{:F—IBZGFEi, FlBB’lz/B’dA.

In this sum, all transversal electric field components F; have
to be considered which surround point 1 clockwise.

After all substitutions there is one equation for each F;
which is described by the other electric field components
and the square of the propagation constant k.. Due to the
linear dependance between the unknowns a complex algebraic
eigenvalue problem (A — AI) x = 0 is obtained where A =
—k2. The transversal electric field distribution corresponds to
X,

B. Transition Cell

For the interface between coarse grid and fine gtid, a
cell as shown in Fig. 2 is applied. It is not possible to
achieve orthogonality between the electric and magnetic field
components if mesh point X is located in the middle of the
cell. Thus, this point has to be shifted to form an orthogonal
grid. The positions of the mesh points are defined as follows:

162 o a a?/2-a-1
= T3 ﬂ:-—, Y=g =
ia 1 8 2(@—1)
(M

The following restriction has to be taken into account: the
parameters given in (7) should be used only for & < 1.
Usually, the grid can be chosen accordingly. For different
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Fig. 4. Error of the propagation constant for the test structure at
ko = 70 m™1, ... conventional method (Yee's grid); local mesh
refinement; ) coarse cell size ds = 2.5 mm; [0 coarse cell size ds = 5 mm.

values of 2, the mesh points of the dual grid calculated by
(7) will be too close to the original grid lines. It is possible
to determine a second set of parameters «, 5, v and § which
holds for 1 < % < 2. For % > 2, however, no solution exists.

III. NUMERICAL RESULTS

Fig. 3 shows the test structure analysed with the proposed
method. It is a simple rectangular waveguide with a conducting
slab. This structure was chosen since a local mesh refinement
according to Fig. 3 is useful to obtain a high field resolution at
the edge. The simple geometry also enables one to determine
the propagation constant with a very high accuracy by means
of a mode-matching method. For kg = 70 m~! one finds
k, = 52.42 m~! with an extrapolated error below 0.01%.

In Fig. 4 the error of the propagation constant is presented
against the matrix order. The dotted curve is obtained with
an equidistant discretization of the structure. For the two other
curves a local mesh refinement as shown in Fig. 3 was applied.
The location of the interface between the two grids varies, i.e.
the area of the local mesh is increased, which also leads to

higher orders of the matrix. The curves constructed by this
scheme end at the dotted curve since increasing the size of the
local mesh will finally result in a structure with a fine mesh
everywhere.

One can observe that all results obtained with a local mesh
refinement provide smaller errors. Computations carried out
for a coplanar waveguide also show improved results for both
the phase and the attenuation constant.

IV. CONCLUSION

A new local mesh refinement algorithm for the finite-
difference method in the frequency domain was presented. It
is based on a noncartesian polygonal grid at the interface.
The method was applied to a test structure for which a
highly reliable reference calculation was performed. It could be
shown that the accuracy of the propagation constant computed
with the new method is significantly higher than that calculated
with a conventional method using a cartesian grid. The method
of polygonal grids is not restricted to local mesh refinements. It
can also be applied for arbitrarily shaped (e.g. round) structures
in order to allow a better approximation.

REFERENCES

[1] T. Weiland, “Three dimensional resonator mode computation by finite
difference method,” IEEE Trans. Magn., vol. MAG-21, no. 6, pp.
2340-2343, Nov. 1985.

[2] A. Christ and H. L. Hartnagel, “Three-dimensional finite-difference

method for the analysis of microwave-device embedding,” IEEE Trans.

Microwave Theory Tech., vol. 35, no. 8, pp. 688-696, Aug. 1987.

K. Beilenhoff, W. Heinrich, and H. L. Hartnagel, “Improved finite-

difference formulation in frequency domain for three-dimensional scat-

tering problems,” IEEE Trans. Microwave Theory Tech., vol. 40, no. 3,

pp. 540-546, Mar. 1992,

M. Rittweger, “Simulation transienter elektrodynamischer ausbrei-

tungsphiinomene zur analyse der (ibertragungseigenschaften von

systemen der mikro-und millimeterwellentechnik,” dissertation,

Universitit Duisburg, Germany, 1992.

[5] S. S. Zivanovic, K. S. Yee, and K. K. Mei, “A subgridding method for
the time-domain finite-difference method to solve Maxwell’s equations,”
IEEE Trans. Microwave Theory Tech., vol. 39, no. 3, pp. 471-479, Mar.
1991.

[6] 1. S. Kim and W. J. R. Hoefer, “A local mesh refinement algorithm
for the time domain-finite difference method using Maxwell’s Curl
equations,” IEEE Trans. Microwave Theory Tech., vol. 38, no. 6, pp.
812-815. June 1990.

3

[t

[4

[



